Measuring human movement for biomechanical applications using markerless motion capture

نویسندگان

  • Lars Mündermann
  • Stefano Corazza
  • Ajit M. Chaudhari
  • Thomas P. Andriacchi
  • Aravind Sundaresan
  • Rama Chellappa
چکیده

Modern biomechanical and clinical applications require the accurate capture of normal and pathological human movement without the artifacts associated with standard marker-based motion capture techniques such as soft tissue artifacts and the risk of artificial stimulus of taped-on or strapped-on markers. In this study, the need for new markerless human motion capture methods is discussed in view of biomechanical applications. Three different approaches for estimating human movement from multiple image sequences were explored. The first two approaches tracked a 3D articulated model in 3D representations constructed from the image sequences, while the third approach tracked a 3D articulated model in multiple 2D image planes. The three methods are systematically evaluated and results for real data are presented. The role of choosing appropriate technical equipment and algorithms for accurate markerless motion capture is critical. The implementation of this new methodology offers the promise for simple, time-efficient, and potentially more meaningful assessments of human movement in research and clinical practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A framework for the functional identification of joint centers using markerless motion capture, validation for the hip joint.

The objective of the study was to develop a framework for the accurate identification of joint centers to be used for the calculation of human body kinematics and kinetics. The present work introduces a method for the functional identification of joint centers using markerless motion capture (MMC). The MMC system used 8 color VGA cameras. An automatic segmentation-registration algorithm was dev...

متن کامل

Markerless Tracking and Surface Measurements in Biomechanical Applications

The need to capture human motion and to reconstruct a human body has been significantly recognized. Special interest lies in the description of changes as a result of pathologies compared to normal healthy subjects and short or long-term adaptations due to interventions. In this paper, we focus on a makerless vision based method to track 3-D motion information from video sequences. Although vid...

متن کامل

Markerless motion analysis in diffusion tensor fields and its applications

The analysis of deformable objects which have a high-degree of freedom has long been encouraged by numerous researchers because it can be applied to such diverse areas as medical engineering, video surveillance and monitoring, Human Computer Interaction, browsing of video databases, interactive gaming and other growing applications. Within the computerized environments, the systems are largely ...

متن کامل

Automated markerless extraction of walking people using deformable contour models

We develop a new automated markerless motion capture system for the analysis of walking people. We employ global evidence gathering techniques guided by biomechanical analysis to robustly extract articulated motion. This forms a basis for new deformable contour models, using local image cues to capture shape and motion at a more detailed level. We extend the greedy snake formulation to include ...

متن کامل

Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system.

Markerless motion capture systems have developed in an effort to evaluate human movement in a natural setting. However, the accuracy and reliability of these systems remain understudied. Therefore, the goals of this study were to quantify the accuracy and repeatability of joint angles using a single camera markerless motion capture system and to compare the markerless system performance with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006